
296 V.S.Bermatr and Iu.S.Riazantsev 

and Explosion (Compendium of Papers), ” Nauka”, Moscow, 1972. 

3. Cole, J., Perturbation Methods in Applied Mathematics. Blaisdell, Waltham, 

Mass. U. S. A. , 1968. 

4. Berman, V. S. and Riazantsev, Iu. S, , Application of the method of 

matched asymptotic expansions to the calculation of the stationary thermal pro- 

pagation of the front of an exothermic reaction in a condensed medium. Prikl. 
Mekh. i Tekh, Fiz., W 5, 1972. 

5. Berman, V. S. and Riazantsev, Iu. S., Asymptotic analysis of stationary 

propagation of the front of a two-stage exothermic reaction in a gas. PMM Vol. 
37, Nn6, 1973. 

6. Bush, W. B. and Fendell, F. E., Asymptotic analysis of the structure of a 
steady planar detonation. Combustion Science and Technology, Vol. 1, 1971. 

Translated by J. F. H. 

UDC 532.529 

FLUIDIZATION IN THE PRZSENCE OF AN OBSTACLE 

PMM Vol. 39, NQ 2, 1975, pp. 316-323 
Iu. P. GUPALO and G. P. CHEREPANOV 

I Moscow) 
(Received December 24, 1974) 

The problem of transition of a friable medium layer into a suspended state in the 

presence in it of an internal obstacle is considered. Problems of this kind are fre- 
quently encountered in practice in connection with heterogeneous catalytic reac- 

tions in reactors with suspended catalyst layer, heat exchangers, surface coating 

operations which involve the immersion of articles in a fluidized layer, etc. Cri- 

tical regions of the onset of fluidized state and the critical velocity of the stream 

are determined by the general method described in [ 1, 21. Results of experiments 
on the fluidization ofa layer with a cylindrical obstacle are presented. Compari- 

son of theoretical and experimental data shows a good agreement. 

1. The problem considered here is a particular case of the general problem of fluid- 
ization onset [l, 21. The latter reduces to the problem of the limit equilibrium of a 
body whose resistance to tensile stress does not exceed a certain limit u, which is con- 

stant for a particular friable medium and, generally, nonzero. 
It was shown earlier Cl, 21 that in the case of the plane problem the lines of principal 

stress along which normal stress components at small areas tangent to these attain their 
maximum a’s, while all shear stresses are zero, coincide with the integral curves z = 

xi (E, 77), Y = zs (g, q) of equation 
adx, == bdxi (1.1) 

(Condition 9 = con& separates one line of the set, z and y are Cartesian coordinates, 
and the E -coordinate is measured along the line q = const ) . Here a and b are com- 
ponents of the body force vector acting on the friable body in directions xi and xs and 
taken with the opposite sign. The body force is 
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Q = d*F - grad p (1.2) 

where d*is the density of the two-phase system, F is the external mass force, and p is 

the pressure in the fluid phase. 
In the axisymmetric problem @] Eq, (1.1) similarly determines the surfaces of princi- 

pal stresses r = xi (E, 11) and a - zs (E, q) in the cylindrical system of coordinates 

r, cp, z. The only unknown stress oE along the line (surface) of principal stresses is of 

the form 

where the arc length rj is taken as the cocrdinate t, c# = const, y = 0 and 1 for the 

plane and the axisymmetric problems.respectively, and function A (q) is determined by 

boundary conditions. The critical point of fluidization onset and the critical values of 
stream parameters are determined by the condition UC = oS inside the layer. 

Let us now make the following fairly general assumptions: 
(1) the friable medium is homogeneous, (2) the fluid is incompressible, and (3) 

the field of external mass forces is solenoidal. As will be shown below, it is possible to 

write out on these assumptions the integral of Eq. (1, l), eliminate in (1.3) the quadrature, 

and obtain the condition for determining critical parameters in a simple form convenient 

for practical application. 

By virtue of the second and third assumptions it is possible to express the components 

of the filtration rate u and of the external mass force vector F in terms of functions 

g(l) (zi, zs) and 9t2) (xi, zs) ,respectively, as 

vi = r-Yd$(l~ / 3x2, 27, = - r-YdgW / kc,. (1.4) 

Fi = r-%A#@) I ax2, F, = - r-3(2) / dxi 

Using Darcy’s law, the formula (1.2) for the body force, and formula (1.4) for the com- 
ponents of the body force taken with inverse sign, we obtain 

lZ= - + $ $$ - (1 - E) (d, - dl) ;?; ?$ 

b = y -- f g + (1 - E) (d2 - d,) $ s 

(1.5) 

where p is the dynamic viscosity coefficient of the fluid, k is the permeability, a is the 

porosity of the friable medium, and d, and dl are the densities of the solid particles and 

fluid, respectively. 
It follows from assumption (1) and formulas (1.5) that (1.1) is an equation in total dif- 

ferentials whose general integral is of the form 

W) (Zl, x2) + E$C2) (Xl, ZJ = rl (I. 6) 

E = $ (1 - e) (d2 - d,) 
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Eq~tion (1.6) defines the set of the sought lines (surfaces) of principal stresses. 
Note that function g(i) (xi, ~3 is determined by the solution of the filtration prob- 

lem which reduces to the determination of a harmonic function in the region occupied 

by the friable medium for specified conditions at the boundaries. The determination of 

function $@)(zi, 2%) in the cases which are important in practical applications (fluidi- 

zation in a gravitational or centrifugal field, etc. ) do not usually present difficulties. 

Using the general integral (1,6), for the Lame’ coefficient .II, we obtain 

It becomes now possible to write formula (1.3) for stresses ukin the simple form 

GE =[url)+E--%,lQ~ (1.7) 

Let &be the length of arc of the characteristic up to the point lying on the free sur- 

face. Using the boundary condition crt = 0 at the free surface, for the critical condi- 

tion of fluidization onset we then obtain _ 

The critical condition thus implies that the product of the body force along the char- 

acteristic passing through a given point inside the layer by the length of the character- 

istic arc from that point to the free surface must be equal to the ultimate tensile stress 

of the medium, Condition (1.8) determines the critical point at each characteristic. 
To determine the points of the beginning of fluidization, it is necessary to select poinrs 

E = E *, for which the fluid flow rate is minimal, 
Note that in the particular case of absence of adhesion between particles, condition 

(1.8) reduces to the condition for the body force to vanish. 

2, Let us consider the case of a cylindrical obstacle in the gravitational field. Let 

iu the problem in plane formulation the obstacle have the shape of a circular cylinder 
whose axis is normal to the plane of flow which is uniform at infinity, The layer is as- 

sumed to be unbounded. 

Solution of the related filtration problem in conditions to which Darcy’s law applies, 
yields for the stream function the following expression: 

w = - ux (1 _ l-Q2 ) 
x2+y2 (2.1) 

where U is the rate of filtration at infinity, us is the cylinder radius, the origin of the 
Cartesian system of coordinates is located on the cylinder axis, and the direction of the 
axis of ordinates coincides with that of the stream of fluid at infinity and is opposite to 
the direction of gravity. 

For function $(a) we evidently have 
$52’s’ zzz gx (2.2) 

where g is the acceleration of gravity. 
In dimensionless coordinates normalized with respect to the cylinder radius, the set of 

lines of principal stresses is, in accordance with (l-6), (2.1) and (2.2}. defined by the equa- 
tion 
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(G--)X+ X2;Y2 =H (G=+, H=$-) (2.3) 

An increase of the velocity of flow of the fluid, i.e. the decrease of parameter G, 
alters the stress field. The related evolution of principal stress lines is shown in Fig. 1 

for G = 3, 2, 1.5 and 1 in diagrams a, b, c and d, respectively, The marked qualita- 
tive change of the field with increasing C; can be observed. 

a b C d 

Fig. 1 

In determining critical points at which fluidization begins and the related rate offluid 

flow is at its minimum, we restrict our analysis for simplicity to the case of absence of 
adhesion between particles of the solid phase (0, = 0). From condition (1.9) and for- 

mulas (2.1) and (2.2) we obtain (in dimensionless coordinates) 

.2XY 
(X2 _J_ yz)e = 0, 

YS--x= o 
G-i+ (Xe$.yz)i= 

which yield two obvious systems of solutions 

x = 0, Y = + (1 - G)+, G < 1 

Y = 0, x = f (G - I)-"*, G > 1 

(in addition to the trivial solutions X2 + P +oo for G = 1). 
For the first system the maximum value of parameter G is G,,, = 1 (for Y = 

f 00 ) and for the second G,,, = 2 (for X = f i). Reverting to dimensional vari- 

ables, we thus conclude that in this case the fluidization onset begins at points CC = 

f a,, y = 0 at the stream critical velocity U, = l12k p-l (1 - a) (d, - d,) 6, 
which is half of that obtaining in the absence of an obstacle; .The corresponding pattern 
of principal stress lines is shown in Fig. 1, b. 

3, To estimate the effect of the apparatus wall on the fluidized layer with an inter- 
nal obstacle, we shall consider the limit case in which the cylinder is in contact with 

the flat wall along one of its generatrice-s and is normal to the stream flowing along the 
wall (see Fig. 2). A direct inspection shows that in this case the complex potential of 
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the flow is defined by 
w := - ia,nU ctg G , 2 =rc+iy 

hence 
$(lt = _ a$#sir, 2nonz cos 2aO~x -I 

( 

& 2nony 

r-3 rz r= ) 
(i" = 5% fy?) (3.1) 

Cansequently the set of principal stress lines, in accordance with (2.2) and (1.6). is de- 
fined by the equation (in dimensionless variables) 

GX -+-sin X 

( 

Y X -1 
X2+ YO ch Xa + yz - cos XZ + Y” ) 

==H (3,2) 

x=GO, Y+-, I-$=&, G+ 

Let us determine the critical points at which the fluidization begins and the critica! 
stream parameters in the case of (T, = 0. Using (3.1) and (3.2) we obtain by virtue of 
(1.9) the following conditions for the transition to fiuidization: 

(X9 + Y")-Z(cos A, - ch I\,)-~ 
[ 
XY cos A, ch h, + 

+(Xp- YZ)sinh,shh,-- XY] = 0 

(3.3) 

G + (X2 -t_ Y2)-2(cos AZ - chh,,j-s x 

I 
lL(XL Y2) cos A, ch &, - X Y sin .& sh A, - -$-(X2 - ~~s)l = 0 

X 
Ax = Xa+ y” 9 

P 
A!/= XZ_i_Yl 

where the dimensionless variables are as defined in (3.2). 

Solutions of system (3.3) are of the form 

X = 0, G + I,', Y-2 (1 - ch Y-i)-t '.= 0 

Y = 0, G - I/, X-2(2 - cos X-l)- s 0 

It follows from this that the sought maximum value of parameter G is obtained at the 

point X = l/n, Y = 0 and is G,,,, = n~/4 

Passing to dimensional variables we conclude that: in this case fluidization begins at point 
.I’ ~z zoo, y = 0 at a stream velocity which is 2.47 
times lower than the velocity at which the beginning of 

fluidization occurs in the absence of an obstacle. It will 
be 4so seen. that in the proximity of the apparatus wall 

3: the critical velocity is reduced by 19% in comparison 
with the case of an obstacle in an unbounded layer (see 

(Sect. 2). 
Note that the above ease also corresponds to the prob- 
lem of au obstacle in the form of two cylinders in con- 
tact along their generatrices and normal to the stream, 

Fig. 2 4, As an example of the axi~mme~ic problem let 
us consider a spherical obstacle. In accordance with 

formulas(l.4) for functions I!J(~) and ‘$@) we have 
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lp) = - f Ur2 
i 

1 _ aoa 

(r2 + zq/z I (4.1) 

where a, is the radius of the sphere, and F and z are cylindrical coordinates (the origin 

of coordinates is at the center of the sphere. and the direction of the z-axis coincides 

with that of the stream velocity at infinity). 

In accordance with (1.6) and (4.1) we obtain for the set of principal stress surfaces 

an equation of the form 

(G - 1) R2 + (R2 +R;+ = H (4.2) 

The pattern of stress field variation with increasing G is here similar to that in the case 

of a cylinder (see Fig. 1). 

To determine the critical points of minimum flow rate which corresponds to fluidiza- 
tion onset from (1.8) we obtain in the case of (J, = 0 the following conditions: 

3R2.2 

(R2 + .P)'/P 
=O, 2(G-I)+ 222-RR2 =O 

(Rz + P)"/z 

As in the case of a cylinder this yields two systems of solutions 

R = 0, 2 = f (1 - G)+ G < 1 

2 = 0, R = 12 (G - I)]-'/3, G > 1 

(in addition to trivial solutions R' + Z2 +-co for G = 1). 
Thus the maximum possible value of parameter G is G,,, = 3/s which obtains for 

Z = 0 and R = 1. .Reverting to dimensional variables we conclude that fluidization 

in the presence of a spherical obstacle takes place first at the circumference of the cen- 

ter section at a critical rate of flow equal to 2/s of the fluidization rate in the absence 
of an obstacle. 

If adhesion between particles of the solid phase is taken into consideration (0, > 0) 
the described above computation procedure is in the main retained, but must be supple- 

mented by the determination of the length of the characteristic arc between the free 

surface and the point of transition to the fluidized state. The form of formula (1.8) implies 
that when the obstacle lies close to the free surface and the layer is reasonably deep, 
the fluldization process is linked with the formation of a discontinuity close to the bot- 

tom of the layer, and the obstacle has no effect. 

6, To check the method of solving fluidization problems described above and in 

[ 1, 21 and, in particular, the results derived for the case of a cylindrical obstacle, special 
experiment was carried out on a plane model. The experiment consisted of measuring. 
by highly sensitive sensors the variation of the layer porosity at various points close to 
the obstacle at several velocities of the fluidizing agent. 

The experimental equipment consisted of a vertical column whose cross section had 
the form of a narrow rectangle 12.7 x267 mm and the height was 1000 mm. A circular 
cylinder of 50 mm diameter was fixed in the middle between the column narrow faces 
at a distance of 450 mm above the gas flow distributor (a perforated plate). The cylinder 
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axis was normal to the wide (front) faces of the column filled with small solid particles. 
The fluidizing agent was fed through the gas flow distributor. Particular attention was 

given to a thorough equalization of flow at the inlet. 

For measuring local variations of the layer porosity in the neighborhood of the cylin- 

der , the latter was surrounded by a set of eight plane capacitive probes. whose plates 
were located at the front faces of the column, as shown in the upper part of Fig. 3 (with 

retained relative dimensions). This arrangement 
made it possible to completely eliminate perturba- 

tions induced by probes. 

Measurement of local variations of the layer po- 
rosity in the neighborhood of the cylinder by capa- 

citive probes was apparently first described in [3]. 
The method used in our experiment is similar to 

that described, for instance, in [4]. It is distingui- 
shed by the inclusion in the probe circuit of a cer- 

taininductance for improving the sensitivity and reli- 
ability of the probes; the resulting oscillating cir- 

cult was tuned in resonance with a high-frequency 

generator, The variation of capacity produced a 
shift of natural oscillations of the probe circuit, and 

this was transformed into proportional voltage which 

was fed into the oscillograph circuit. 

Fig, 3 

Experiments were carried out with quartz sand 

in a narrow range of 0.416 and 0.265 mm of aver- 
age dimensions and of densities of 2.65 and 2.57 

g/cm 3 , respectively, fluidized by air. 

To eliminate to the greatest possible extent tbe 
effect of adhesion between particles “reverse fluid- 

ization” was resorted to in our experiments, i. e. the high stream velocity at which the 

layer was fully fluidized was gradually reduced until the layer became completely sta- 

tionary. In the course of this the layer capacitance in the cylinder neighborhood was 

continuously recorded by probes l- 8 (Fig. 3). Typical oscillograms (curves are denoted 
by the probe number) are shown, as an example, in the lower part of Fig. 3 for stream 
velocities close to critical (the curves on the right of the vertical dash line relate to the 
stream veiocity [i == 0.66 u”, and on the left of it to u >= 0.58 L:“, where CT- is the 

velocity at the beginning of fluidization in the absence of an obstacle). 
It has been established that fluidization onset begins at points of the cylinder surface 

at its maximum cross section. The stream velocity at the beginning of fluidization was 

in all cases equal 5.5-60% of that in the absence of an obstacle, which within the accu- 
racy of the experiment is completely in agreement with the results presented in Sect.2. 

We point out that the pattern at the beginning of fluidization obtained in Sect. 2 is in 
agreement with the results of observation of the behavior of the layer in the vicinity of 
a cylindrical obstacle under conditions of developed fluidization described in [5, 61, 

In conclusion the authors express their gratitude to D,Harrison and S, Fahimi for their 
help in carrying out the experiment. 
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Mixed problems of the theory of elasticity, hydro- and aero-mechanics and of 

mathematical physics for the regions with partly infinite boundaries (a strip, lay- 

er, cylinder, wedge, cone, etc. ), can often be reduced to studying d-1 integral 
equations. These equations usually involve the use of an integral transformgene- 

rated by the Sturm-Liouville problem on a semi-infinite interval. Mixed prob- 

lems for the finite regions (rectangle, circular plate, cylinder of finite length, 

sphere, etc. ) can often be reduced to studying the dual series equations of some 

complete system of weight-orthonormed functions generated by the Sturm-Liou- 
ville problem on a finite interval. The present paper offers a method of reducing 
a wide class of such dual integral and series equations to infinite algebraic sys- 
tems of special type. A way of investigating the infinite system obtained is in- 

dicated. The concept underlying the method was explained earlier by the author 

in Cl]. 

1. Let a second order linear differential equation be given 

(L - U”) y = 0, Ly = r (X) Is (X) ,‘I’ + t (4 y (n u’x <co) (1.1) 

Here s (z) > 0 when z E (a, oc) and r (2) is a sign-definite function for 5 E (a, 
oo). Let also the functions y and y’ be bounded when J: + oc and 

a,y’ + f-%y = 0 (1.2) 


